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Abstract The double slit experiment (DSE) is known as an important cornerstone in the
foundations of physical theories such as Quantum Mechanics and Special Relativity. A large
number of different variants of it were designed and performed over the years. We perform
and discuss here a new version with the somewhat unexpected results of obtaining interfer-
ence pattern from single-slit screen. We show using either the Brill’s version of the canonical
formulation of general relativity or the linearized version of it that one may find correspond-
ing and analogous situations in the framework of general relativity.
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1 Introduction

There is no physical experiment which plays such an important historical role in the es-
tablishment and development of fundamental physical theories [1] such as the double slit
experiment (DSE). It was first represented in 1803 by Young [2] as a decisive proof of
the wave nature of light. Later, its interferometric character serves, through the Michelson–
Morley experiment [3, 4], as the key trigger for the enunciation of the special relativity and
the constancy of light velocity [4]. Still later, experimenting with some variants of the DSE
(see the following paragraphs) has aroused fundamental problems and paradoxes which lead
to a new physical understanding embodied in the laws of Quantum Mechanics ([5, 6], see,
especially, Chap. 1 in [7]).

As known, the interference pattern resulting from the DSE [7, 8] appears even if the
intensity of the passing light is decreased until an average of only one photon is in transit
between source and double-slit screen [7]. From this one may conclude [7] that a single
photon is capable of interfering with itself. Moreover, although each of the passing photons
can go only through one of the slits the interference pattern appears only when both slits
are open [5–7, 9–13]. In other words, as emphasized in [7, 9–13], if the experiment is also
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designed, by either closing one slit or adding photons detectors at the slits (see Fig. 3 in [7]),
to supply the additional information of the exact slit through which each photon passes then
the interference pattern disappears [5–7, 9–13]. This demonstrates the large influence of
the observation itself upon the obtained results (see, for example, [9], for this influence in
Quantum Mechanics and see [14] for this influence in relativity).

In order to isolate the real factors which determine the presence or absence of the inter-
ference pattern in the DSE we summarize here some versions of it [9–13, 15] with particle
detectors at the slits.
Experiments: The particle detectors are;
(a) Turned-on and the data about the exact routes passed by the photons recorded and used
during the experiment.
(b) Turned off and, therefore, no data were recorded and used during the experiment.
(c1) Turned on but the observer does not bother to record the count at the slits.
(c2) Turned on and also recording the count at the slits but this information is thrown and
not used during the experiment.
(d) Turned-on and also recording the supplied information but it is mixed with other unre-
lated data so that the observer prepares some program which analyzes the combined infor-
mation in either one of the two following ways;
(d1) The unrelated data are removed in which case one remains with the real data from the
detectors.
(d2) Keeping the whole mixed-up information so the true data from the detectors are not
available.
Results: For final analysis of (b), (c1), (c2), (d2) an interference pattern appears and for
(a), (d1) no such pattern is seen. We note that for (a), (d1) the optical pattern shown on the
screen is separated into two patterns [9–13, 15] each of them is of the single-slit experiment
(SSE) kind and corresponds to the slit which is in line with it. That is, there exists no inter-
ference of any photon from one slit with any other photon from the other slit so that each of
the two patterns is formed from the diffraction of the particles which pass through the slit in
line with it as schematically shown in Fig. 3.

One may realize from (b), (c1), (c2) and (d2) that even the determination and recording of
the exact routes of the particles through the double-slit screen are not enough for canceling
the interference pattern if, as mentioned, these data from the detectors are not included in the
experiment itself [7]. It can also be seen from the results of (d1) and (d2) that the inclusion
of these data in the DSE may be performed even years after completing the passage through
the slits (of course, before obtaining the optical pattern on the photosensitive screen) which
constitutes the known delayed choice experiment [9, 15]. That is, the important factor which
determines the form of the obtained optical pattern is the use (or not), during the DSE, of
the information about the routes of the photons through the slits. Moreover, as seen in the
optical literature [8], this is valid for any multiple-slit screen. That is, any such screen may
demonstrate either the interference pattern of the DSE kind (as in Fig. 1) if the data about the
routes through slite are not used during the experiment or a number of diffraction patterns
each of them of the SSE kind (see Fig. 2) if these data are used. The number of these SSE’s
diffraction patterns equals the number of slits as seen, for example, in Fig. 4 for the four-
slit screen where the data about routes are used during the experiment. The only difference
between the interference pattern of the DSE and that of any other n-slit pattern is that the
larger is n the thinner become the fringes of this pattern [8].

We show, through actual experiments, that the noted conditions of using or not using the
data about the photons routes which, respectively, entail diffraction or interference patterns
are valid not only for the double or any other multiple-slit screen but also for the SSE. Note
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Fig. 1 A schematic representation of the DSE, including the light source S, is shown at the left subfigure a
where the data about the routes through slits are not used during the experiment. The interference pattern
resulting from the optical path difference between the rays from the two slits at screen A is shown on the
photosensitive screen B . At the right subfigure b one may see the corresponding routes traversed by the
photons between the two screens

Fig. 2 A schematic representation of the SSE, including the light source S, is shown at the left subfigure a
where the observer knows and, therefore, uses during the experiment the datum about the nature of screen.
The diffraction pattern resulting from the optical path difference between rays from same slit at screen A is
shown on the photosensitive screen B . At the right subfigure b one may see the corresponding routes traversed
by the photons between the two screens where the most traversed route is that in the forward direction (m = 0)

that for any n-slit screen, where n ≥ 2, the mentioned data about routes may sum, for a large
number of photons, to a huge amount of information whereas for the SSE these data involve
only one single piece which is that all the photons pass only through that slit. Thus, we
show that if this single data is not used during the experiment then the expected single-slit
diffraction pattern does not appear.

It should be noted in this context that up to now the very nature of the employed screen,
if it is single, double or multiple-slit, is always known and used during the experiment. But
unlike the double and any other multiple-slit experiments for which one may know and,
therefore, use during the experiment the datum about the number of slits without using the
data about the routes of the photons through them for the SSE case they, actually, lead to
each other. This is because if one knows and, therefore, use during the experiment the datum
that he is employing single-slit screen then he, automatically, also knows and use the datum
that all photons pass through that slit and vice versa.
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Fig. 3 At the left subfigure a we see the optical pattern obtained from the double-slit screen when the routes
of the photons through the slits are recorded and taken into account during the experiment. One have here
no interference between rays from the two slits but two separate diffraction patterns each composed by the
photons passed through the slit in line with it. At the right subfigure b we see the form of the routes between
the screens where most photon pass in the two forward directions

Fig. 4 At the left subfigure a we see the optical pattern obtained from the four-slit screen when the routes
of the photons through the slits are recorded and taken into account during the experiment. One have here
no interference between rays from any two slits but four separate diffraction patterns each composed by the
photons passed through the slit in line with it. At the right subfigure b we see the form of the routes between
the screens where most photon pass in the four forward directions

Suppose, now, that the observer activates a single-slit screen without knowing it and,
therefore, the information related to the single route of all the photons can not be used during
the experiment. We show that in this case, and under the special conditions described in
Sect. 2, the resulting pattern is that of interference as demonstrated in the appended pictures.1

That is, instead of obtaining the diffraction pattern, shown in Fig. 2, which is typical of SSE
we have obtained the interference pattern, shown in Fig. 1, which is characteristic of n-slit
screen (n ≥ 2). That is, one may conclude for any n-slit screen, where n ≥ 1, that if one
uses the data about the routes then one obtains n diffraction patterns where n is the number
of slits as shown, for example, in Fig. 2 for n = 1 and in Figs. 3, 4 for n = 2 and n = 4.
If, however, these data are not taken into account during the experiment then the obtained

1The kind of digital camera used was HP Photosmart M22 and the photographs taken were in JPEG format
which were converted to the PS one.
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pattern for any n-slit screen, even for n = 1, is the interference one shown in Fig. 1. In
other words, for all n-slit screens, where n ≥ 1, changing the situation from using during the
experiment the data about the photon routes to not using them amounts to changing these
routes from being densely and continuously arrayed in the forward directions (m = 0) to
being fringed and striped.

We show in this work that this formation of periodic fringes and stripes may also be found
as geodesics changes in at least two theoretical branches of the general relativity theory. As
known, using the equivalence principle [4, 16, 17] one may discuss any physical event as
either occurring in a flat spacetime with physical interactions or resulting from a curved
spacetime [4, 16, 17] with no such interactions. Thus, the mentioned change of the photon
routes, from the continuous diffraction type (in the neighborhood of the order m = 0) to
the fringed interference one, may be, theoretically, paralleled to corresponding situations in
general relativity [4, 16, 17].

Note that one may argue that the mentioned DSE results, detaily described in Sect. 2,
should be exclusively discussed in pure quantum mechanical terms without having to in-
voke any general relativity idea. We answer to this that the relativistic discussion here is
not suggested as some kind of explanation or interpretation of this DSE. Our aim in this
discussion is to point out that corresponding and parallel situations may also, as mentioned,
be encountered in the framework of general relativity. That is, one may, theoretically, find
formations of fringed and nonfringed trapped surfaces which are related to the same kind
of GW (either the Brill or plane GW’s) as those found with the same kind of optical screen
(see Figs. 7, 8).

As known [4, 16, 17] geodesics changes are related in the general relativity to cor-
responding changes in the geometry of the surrounding spacetime which are, especially,
tracked to the presence of gravitational waves (GW) [16–19]. Moreover, if these GW are
strong enough they may entail corresponding and lasting changes in the form of the rele-
vant geodesics which stay long after the generating GW disappear. As mentioned, the noted
changes in the photon routes result only from considering (or not) during the experiment the
data regarding these routes and not from any other force. Thus, a suitable parallel grav-
itational situation is related more to the pure source-free GW’s [16, 20–26] than to the
matter-sourced ones [16–19]. Accordingly, we pay special attention in the following to these
source-free gravitational fields which constitute solutions to the Einstein vacuum field equa-
tions [4, 16, 17] and propagate in vacuum as pure source-free GW’s [16, 20–24, 27, 28] with
no involvement of matter.

As representatives of these source-free radiation we consider the (1) Brill GW’s
[20–24, 27–29] and (2) the plane GW’s in the linearized version of general relativity. The
later kind is chosen because it is discussed in the almost flat metric which is similar to
the flat metric of the mentioned optical experiments. Moreover, it has been shown [39, 40]
that, like the electromagnetic (EM) n-slit experiments, the plane GW in the linearized ver-
sion of general relativity have, under special conditions, properties which make it capable
of interfering with other GW’s. Both of these GW change, if they are strong enough, the
surrounding spacetime and its topology [30, 31] which, naturally, entail also changes of
geodesics. The new changed spacetime is, theoretically, represented, in the spacetime re-
gion traversed by these GW’s, by trapped surfaces [16, 24, 29, 32–34] which have the same
intrinsic geometry as that of the generating GW. One may, especially, count two different
kinds of these surfaces; (1) the singular trapped ones [24, 29, 34–37] and (2) the nonsingular
ones [33] which are related to the regular and asymptotically flat initial data [16, 20–24, 38]
in vacuum. Note that as [39] interference patterns and holographic images result from inter-
fering electromagnetic waves so trapped surfaces result also from interfering GW’s.
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In Sect. 2 we represent a detailed account of the experiment from which we obtain, under
suitable conditions, interference fringed pattern from single-slit screen. In Sect. 3 we have
shown that one may obtain similar fringed geodesics by beginning from the Brill’s metrics
and use the terms and terminology related to it. We have, also, calculated the corresponding
fringed trapped surface which is formed from this Brill’s pure radiation. The trapped sur-
face, without fringing, resulting from the Brill GW’s have been calculated in [24] and were
represented, for comparison and completeness, in Appendix 1. In this appendix we have
also represent a short review of the ADM canonical formulation [16, 38] of general relativ-
ity and the specific conditions which lead to the Brill’s source-free GW’s. In Sect. 4 we have
calculated the fringed trapped surface obtained from plane GW’s by using the approximate
linearized general relativity [16]. The plane GW’s in the framework of this approximate the-
ory and the resulting trapped surfaces, without fringing, have been detaily calculated in [39]
and were represented, for comparison and completeness, in Appendix 2. We discuss and
summarize the main results in a concluding remarks section.

2 Obtaining Interference Pattern from SSE

The experimental set-up for the variant of the DSE discussed here includes a laser pointer
as light source and 30 mirrors. The laser pointer acts as a strong monochromatic red light
source with wavelength in the 650–680 nm range and output of less than 1 mW. The mirrors
were preferred to serve as double and single slit screens because it is easy to inscribe on
their coated sides very narrow slits (scratches). Thus, using double edge razor blades two
narrow slits of about 0.3 mm wide were cut in the coated side of each of them where the
distances between the slits varied in the range of 1–4 mm. Twenty nine (29) mirrors were
prepared to serve as real double slits screens and in the remaining mirror one slit was real
and the second was spurious and superficially cut so that it was still opaque. This is done so
that when the observer looks at this mirror from some distance he would not differentiate
between it and the other real two-slit ones.

In Fig. 5 one may see a photograph of the actual arrangement of the experiment. This
figure as well as Figs. 6, 7, 8 are real pictures photographed by a digital camera.2 In Fig. 5
one may see at the front the laser pointer mounted upon a white rectangular box. As seen,
this laser pointer is hold by two binder clips which serve the twofold purpose of conveniently
directing it towards the back of the mirror-screen and also of pressing its operating button so
as to activate it. At the back of the figure one may see a second rectangular box upon which
one mirror (of the available 30) is mounted with the help of a second pair of binder clips.
One may also see at the back of the mirror the real or spurious double slit and the red laser
ray from the pressed laser pointer. Moreover, with a larger resolution one may even discern
the red optical pattern at the white wall behind the mirror. At the right one may see inside
another rectangular box the operated mirrors. In Fig. 6 one may see a typical picture of the
optical interference pattern obtained from one of the 29 real double-slit mirrors where the
nature of this mirror is known and used during the experiment but not the data about the
routes of the photons through the slits. In Fig. 7 we show two typical photographs of the
optical diffraction pattern obtained from the faked double-slit mirror when its true nature,
that it is single-slit, is used during the experiment. The left picture was photographed by

2The kind of digital camera used was HP Photosmart M22 and the photographs taken were in JPEG format
which were converted to the PS one.
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Fig. 5 This figure is a digital
camera photograph of the
arrangement used to perform the
experiment described in Sect. 2.
At the front one may see on a
white box the red laser pointer
hold by two binding clips. At the
back one may see on another box
the slitted mirror which is also
hold by another pair of binding
clips. The red laser ray from the
pointer is shown at the back of
the mirror and with a larger
resolution one may even discern
the optical pattern on the white
wall. At the right one may see in
another box the ensemble of
mirrors used

Fig. 6 The optical interference
pattern obtained from one of the
29 real double-slit mirrors where
the nature of this screen is known
but not the data about the routes
through the slits

taking a longer distance between the mirror and the white wall compared to the distance
used for the right picture.

Using random number generator the observer begins the experiment by randomly picking
one mirror from the available 30 without knowing if he choose one of the real double-slits
or the faked one where the probability to choose the former is 29

30 = 0.97 and that for picking
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Fig. 7 At the left and right subfigures we see photographs of the optical single-slit diffraction pattern taken
at the start of the experiment from the spurious double-slit screen where the true nature of this screen was
known and used during the experiment. The distance between the mirror and wall, used for obtaining the
optical pattern of the left picture, was larger compared to that used for the right picture

the latter is 1
30 = 0.033. He then point the laser pointer from a distance of about 1 meter

at the apparent double slits in the coated side of the mirror and look at the resulting light
pattern on the white wall situated 1.75 meters from the mirror (see Fig. 5). The obtained
light pattern is expected to be either that of the interference type as in Fig. 1 in case the
activated screen was one of the real double slit mirrors or that of the diffraction form of
Fig. 2 if this screen was the spurious one. After obtaining the optical pattern upon the white
wall the observer checks the operated screen to see if it is one of the real double-slit mirrors
or the faked one. Thus, if it is found to be one of the true double-slit mirrors it is returned
to the pile of 30 mirrors from which another one (which may be the former) was randomly
chosen for a new experiment of the type just described. This repetition was stopped only
when the involved screen was found to be the spurious one.

Now, since the chance of randomly picking the faked screen is only 0.033 whereas that
for choosing the real one is 0.97 one, naturally, have to repeat the described experiment
a large number of times until the spurious screen was found. Thus, this experiment was,
actually, repeated 228 times over several weeks and for each of these experiments we have
first obtained interference pattern and then found that the activated screen was one of the
29 real double-slit screens as expected. The 229-th experiment began, as its predecessors,
without knowing and, therefore, without using the true nature of the involved screen and, as
before, the obtained light pattern was of the interference type but upon looking closely at the
relevant screen it has, somewhat unexpectedly, turned out to be the spurious one which is,
actually, a single slit. That is, interference pattern, which typically result from n-slit screen
(n ≥ 2) was, actually, obtained from single-slit one.

In order to be sure of this result a new series of these experiments was again repeated
but this time each optical pattern is photographed by a digital camera3 before checking the

3The kind of digital camera used was HP Photosmart M22 and the photographs taken were in JPEG format
which were converted to the PS one.
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Fig. 8 This figure is a photograph of the optical interference pattern obtained from the spurious double-slit
screen where the true nature of this screen was not known and, therefore, not used during the experiment. Note
the similarity of this pattern, actually obtained from single-slit screen, to that of Fig. 6 which was obtained
from one of the real double-slit screens. Comparing this photograph to those of Fig. 7, which are obtained
from the same screen, one may realize that the use (or not) during the experiment of the relevant data is the
important factor which determines the obtained optical pattern

true nature of the activated screen. As before, hundreds of them (216) were performed over
several weeks before the faked double-slit screen were turned up at the 217-th experiment.
As for the former series of experiments the finding of this actually single-slit screen was
preceded by obtaining the n-slit interference pattern (n ≥ 2) and not the expected single-
slit diffraction one. This time, unlike the former series, all the obtained 217 optical patterns
were photographed before checking the nature of the employed screen. A photograph of the
optical pattern resulting from the 217-th experiment is shown in Fig. 8 and one may see that
it is of the interference pattern kind as realized when comparing it to Fig. 6 which shows the
optical pattern obtained from a real double-slit screen.

Analyzing the former results one may conclude that performing these experiments under
the conditions of not knowing the nature of screen and, therefore, not using during the ex-
periments the data about the routes through the slits changes the form of these routes from
the diffraction pattern of Fig. 2(b) to the n-slit interference one (n ≥ 2) shown in Fig. 1(b).
This outcome for the SSE together with the mentioned results obtained for any other n-slit
screen (n ≥ 2) led one to conclude that interference pattern is obtained for any n-slit screen,
even for n = 1, so long as the mentioned data were not used during the experiment. When,
however, these data are used during the experiment one obtains for such n-slit screen (n ≥ 1)
n diffraction patterns each of them of the SSE kind shown in Fig. 2. In other words, con-
sidering the central region around the order m = 0, one may realize that, when the noted
data are not used during the experiments, this region becomes striped and fringed compared
to the nonfringed form it has when these data are used. That is, an interval between photon
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Fig. 9 A schematic representation of the double-slit array, used to obtain interference patterns, is shown. The
path difference d sin(φ) and the sinusoidal interference form are shown. Using this figure one may obtain (3)
for the interval between the orders m = 0 and m = 1

routes, which were zero in the region around m = 0 when the noted data were used (see
Figs. 2, 3, 4), has been formed when these data were not used (see Fig. 1). We calculate in
the following the length of this interval which is shown in Fig. 9 between neighboring max-
ima. The path difference between two rays from the two slits is shown at the left of Fig. 9.
Thus, denoting by B and D the respective bright and dark fringes upon the photosensitive
screen one may use Fig. 9 and write these path differences for the DSE as [8]

d sin(w)B = mλ,
(1)

d sin(w)D =
(

m + 1

2

)
λ.

As shown in Fig. 9, d and d sin(w) respectively denote the interval between the two slits and
the path difference between the two interfering waves. By λ and m = 0,1,2, . . . we denote
the wavelength of the light from the source and the order of interference. For the single slit
experiment (SSE) one may use the following expressions [8]

b sin(w)B = mλ,
(2)

b sin(w)D =
(

m + 1

2

)
λ,

where b is the length of the slit and b sin(w) is the path difference between rays diffracted
from the ends of the slit. That is, the locations of the different maxima and minima do not
result from any interference but from diffraction through the single slit. As a result, the
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maximum intensity for the order m = 0 is greater by several order of magnitudes from the
corresponding maxima shown for the orders m = 1,2, . . . (see Fig. 2) and from those of the
DSE. That is, most photons which diffract through the single slit propagate parallel to each
other in the forward straight direction which explains the large intensity for the order m = 0.

In Fig. 9 we show the two ordered maxima m = 0 and m = 1, denoted in the following
by m0 and m1, and calculate the interval between them by considering the right angled
triangle build from the sides m0 − x1, g and f where x1 denotes the first minimum. From
this triangle one obtain tan(w) = (m0−x1)

g
so that the sought-for length �(w) = m0 − m1 is

�(w) = m0 − m1 = 2g tan(w). (3)

As noted, the changed photon routes may be paralleled to corresponding geodesics changes.
These changes are extensively discussed [4, 16, 17, 44] in the framework of general rel-
ativity (see, especially, the annotated references in [16]) as resulting from corresponding
spacetime changes. The later changes are, especially, tracked to GW’s [18, 19] whose in-
trinsic spacetime geometry [36, 37] is imprinted upon the traversed spacetime. As men-
tioned, we pay special attention to the more appropriate source-free GW’s and consider
the Brill’s and plane GW’s (we may also discuss the Kuchar’s cylindrical source-free
GW’s [16, 45]).

Thus, as for the optical slitted-screens in which one may either use during the exper-
iments the data about the routes through the slits (which result in obtaining diffraction
patterns) or not using these data (which result, for any n-slit screen (n ≥ 1), in obtaining
fringed interference pattern) one may, likewise, discern two similar gravitational states. One
state may be characterized by some assumed spacetime metrics such as the Brill’s or the
almost flat metrics which is used in discussing plane GW’s. The second gravitational state is
characterized by a metrics which, actually, is the fringing of the former in a manner similar
to the stripes of the interference pattern which may be regarded as the fringing, especially, in
the neighborhood of the orders m = 0, of the diffraction patterns of Figs. 2, 3, 4. The Brill’s
metrics and its corresponding nonfringed trapped surface [24] is reviewed in Appendix 1
and the almost flat metrics with the relevant nonfringed trapped surface [39] is represented
in Appendix 2. The fringed trapped surfaces is discussed in the following section for the
Brill’s GW and in Sect. 4 for the almost flat plane GW’s.

3 The Fringed Trapped Surface Resulting from the Brill GW’s

The source-free Brill GW’s are discussed in the framework of the ADM formalism [16, 38].
In this canonical formulation of general relativity one, generally, consider the simplified case
of time and axial symmetries and no rotation [20–24, 27, 28]. Under these conditions one
finds a solution [20–24, 27, 28] to the Einstein vacuum field equations which represents, as
mentioned, pure source-free gravitational wave with positive energy [20–24, 27–29]. A short
review of the ADM canonical theory [16] with the former conditions is represented in Ap-
pendix 1. Strong Brill GW’s are involved with the appearance of a marginally trapped sur-
faces which are equivalent, for the time-symmetric condition discussed here, to minimal
area surfaces [24]. These surfaces may be represented in a Cartesian coordinates by using
embedding diagrams of them [16, 24]. As known [16, 24], to embed the whole surface is
difficult so one, generally, resort to the task of embedding a plane through the equator which
is simpler due to the assumed rotational symmetry.

As mentioned, we have obtained for any n-slit screen, even for n = 1 as described in
Sect. 2, an interference pattern which are periodically alternating sequence of light and dark
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Fig. 10 In this figure one may
see the periodic function M(φ)

from (6)

bands (see Fig. 1(b)) where the bright bands allow photons to pass along them and the dark
ones do not allow them. Using the equivalence principle these alternating fringes may, as
mentioned, be discussed as periodically alternating bands of geodesics. That is, the optical
bright bands correspond to strong curvature [4, 16, 17] geodesics and the optical dark bands
to the weak curvature ones. As noted, these alternating bands of strong and weak curvatures
may be considered as forming a trapped fringed surface which, theoretically, can be em-
bedded in an Euclidean space [16, 24, 32]. The embedding procedure may, analytically, be
expressed by requiring the metric of the equator [24] to be equal to that of a rotation surface
(in Euclidean space) which is formed from a periodic alternating allowed and disallowed
bands. That is, one may write

xB = FB(ρ,φ) · cos(φ),

yB = FB(ρ,φ) · sin(φ), (4)

zB = hB(ρ),

where the function hB(ρ) does not depend upon the variable φ and the superscript B denote
that we refer to the Brill source-free case. The function FB(ρ,φ) may be written as the
following products

FB(ρ,φ) = f B(ρ) · MB(φ), (5)

where the function MB(φ) is introduced to ensure the mentioned periodic fringing and is
defined as

MB(φ) =
⎧⎨
⎩

1 for −π ≤ φ ≤ − π
2 ,

0 for − π
2 < φ < π

2 ,
1 for π

2 ≤ φ ≤ π .
(6)

As seen, the periodic function MB(φ), which is shown in Fig. 10, is piecewise monotonic
and bounded on the interval (−π,π) and so it can be expanded in a Fourier series [46, 47].
Thus, using the Fourier analysis [46, 47] one may determine the Fourier coefficients as

aB
0 = 1

π

∫ π

−π

MB(φ)dφ = 1

π

(∫ − π
2

−π

1dφ +
∫ π

2

− π
2

0dφ +
∫ π

π
2

1dφ

)
= 1

π
π = 1,

aB
k = 1

π

∫ π

−π

MB(φ) cos(kφ)dφ = 1

π

∫ − π
2

−π

1 cos(kφ)dφ + 1

π

∫ π

π
2

1 cos(kφ)dφ

= 1

π

(
sin(kφ)

k

)∣∣∣∣
− π

2

−π

+ 1

π

(
sin(kφ)

k

)∣∣∣∣
π

π
2 (7)

= − 2

πk
sin

(
k
π

2

)
=

⎧⎨
⎩

0 for k even,
− 2

πk
for k odd and k = 4n − 3,

2
πk

for k odd and k = 4n − 1,
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bB
k = 1

π

∫ π

−π

MB(φ) sin(kφ)dφ = 1

π

∫ − π
2

−π

1 sin(kφ)dφ + 1

π

∫ π

π
2

1 sin(kφ)dφ

= − 1

π

(
cos(kφ)

k

)∣∣∣∣
− π

2

−π

− 1

π

(
cos(kφ)

k

)∣∣∣∣
π

π
2

= 0,

where n = 1, 2, 3, 4, . . . . From (6–7) one may write the function MB(φ) as

MB(φ) = 1 − 2

π

(
cos(1φ)

1
+ cos(5φ)

5
+ · · · + cos((4n − 3)φ)

(4n − 3)
+ · · ·

)

+ 2

π

(
cos(3φ)

3
+ cos(7φ)

7
+ · · · + cos((4n − 1)φ)

(4n − 1)
+ · · ·

)

= 1 − 2

π

( ∞∑
n=1

cos((4n − 3)φ)

(4n − 3)
−

∞∑
n=1

cos((4n − 1)φ)

(4n − 1)

)
. (8)

Now, using (4–5) and following the discussion in [24] one may write for the metric on
the equator

(dsB)2 = (dxB)2 + (dyB)2 + (dzB)2

= ((MB)2(φ)(f B)2
ρ(ρ) + (hB)2

ρ(ρ))dρ2

+ (f B)2(ρ)((MB)2
φ(φ) + (MB)2(φ))dφ2

+ 4MB(φ)MB
φ (φ)f B

ρ (ρ)f B(ρ)dρdφ, (9)

where f B
ρ (ρ), hB

ρ (ρ) denote the respective derivatives of f B(ρ), hB(ρ) with respect to ρ

and MB
φ (φ) is the derivative of MB(φ) with respect to φ. The metrics from (9) is equated to

the Brill’s one [20–24, 27, 28] which is represented in Appendix 1. Note that for performing
the mentioned embedding one consider [24] only the metrics on the equator [24] which is
equated to the surface of rotation from (4) and also the metrics for the Brill GW’s is generally
assumed for the norotation case [24] (see Appendix 1). Thus, one obtains from this equating
process

(dsB)2 = (dxB)2 + (dyB)2 + (dzB)2

= ((MB)2(φ)(f B)2
ρ(ρ) + (hB)2

ρ(ρ))dρ2

+ f 2(ρ)((MB)2
φ(φ) + (MB)2(φ))dφ2

= gB
ρρdρ

2 + gB
φφdφ2 = ψ4e2Aqdρ2 + ψ4ρ2dφ2, (10)

where gB
ρρ and gB

φφ are the (ρρ) and (φφ) components of the Brill metric tensor. For obtain-
ing FB(ρ,φ), FB

ρ (ρ,φ) and hB(ρ) one equates the coefficients of dρ2 and dφ2 as follows

FB(ρ,φ) = f B(ρ)MB(φ) = ρψ2√
1 + (MB)2

φ(φ)

(MB)2(φ)

,
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FB
ρ (ρ,φ) = f B(ρ)ρM

B(φ) = 1√
1 + (MB)2

φ(φ)

(MB)2(φ)

(ψ2 + 2ρψψρ), (11)

hB(ρ) =
∫

dρ(ψ4e2Aq − (FB)2
ρ(ρ,φ))

1
2 =

∫
dρ(ψ4e2Aq − (MB)2(φ)(f B)2

ρ(ρ))
1
2 .

The last expressions for FB(ρ,φ), FB
ρ (ρ,φ) and hB(ρ) define the embedded fringed surface

z(x, y) on the equator which has the same geometry as that of the time-symmetric Brill’s
GW. These surfaces have the same general forms as those shown in Fig. 11 for the non-
fringed surfaces of (37) except that now, for appropriately representing (11), these surfaces
should be periodically fringed.

Now, as done in Sect. 2 regarding the orders m of the fringed interference pattern
(see (1–3)) and the intervals between neighboring maxima we also find here the orders and
intervals related to the fringed trapped surface geometry resulting from the Brill GW’s.
That is, realizing from (6) and Fig. 10 that any two neighboring maximal or minimal
bands, for which one respectively have MB(φ) = 1 and MB(φ) = 0, are separated by in-
tervals of ±π one may denote the angles related to these ordered bands by φm = φ0 ± mπ

where φ0 corresponds to m = 0. Note that for m even (positive or negative) one al-
ways have cos(φm) = cos(φ0), sin(φm) = sin(φ0) and for m odd (positive or negative)
cos(φm) = − cos(φ0), sin(φm) = − sin(φ0). Also, one always have for any m, positive or
negative, even or odd, cos(φm+1) = − cos(φm), sin(φm+1) = − sin(φm). Thus, remember-
ing that the coordinates of the fringed trapped surfaces are given by (4) one may write in
correspondence with (1–2)

xB
m = FB(ρ,φm) cos(φm) = f B(ρ)MB(φm) cos(φm),

(12)
yB

m = FB(ρ,φm) sin(φm) = f B(ρ)MB(φm) sin(φm),

where for maximal bands one should have either −π ≤ φ ≤ − π
2 or π

2 ≤ φ ≤ π for which
MB(φ) = 1 (see (6)) and for minimal bands φ should be from the range − π

2 < φ < π
2 for

Fig. 11 A schematic
representation of the embedded
trapped surface shown for the
three values of the amplitude:
A ≈ 2, A ≈ 5 and A ≈ 15. Note
that the circular form of the
bottom surface corresponds to
the smallest amplitude of A ≈ 2
and that as this amplitude grows
the surface tends to pinch off and
to close on itself
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which MB(φ) = 0 (see (6)). Now, denoting the interval between two neighboring m orders
in the fringed trapped surface geometry by �B(ρ) and using the relations cos(φ(m+1)) =
− cos(φm), sin(φ(m+1)) = − sin(φm) and MB(φ(m+1))+MB(φm) = 2 (see (8)) one may write
in correspondence with (3)

�B(ρ) =
√

(xB
(m+1) − xB

m)2 + (yB
(m+1) − yB

m)2

= {(f B(ρ)MB(φm+1)) cos(φ(m+1)) − f B(ρ)MB(φm) cos(φm))2

+ (f B(ρ)MB(φm+1)) sin(φ(m+1)) − f B(ρ)MB(φm) sin(φm))2} 1
2

= {(f B)2(ρ)(MB(φ(m+1)) + MB(φm))2(cos2(φm) + sin2(φm))} 1
2

= 2f B(ρ) = 2ρψ2√
((MB)2(φ) + (MB)2

φ(φ))
, (13)

where the last result follows from the first of (11).

4 The Fringed Trapped Surface Resulting from the Linearized Plane GW’s

We, now, find, as for the Brill GW’s discussed in the former section, the required fringed
trapped surface related to the linearized plane GW’s and begin by assuming, as in [24], that
its metric is that of a surface of rotation z(x, y) related to Euclidean space. That is, one may
write

xP = FP (ρ,φ) cos(φ) = f P (ρ)MP (φ) cos(φ),

yP = FP (ρ,φ) sin(φ) = f P (ρ)MP (φ) sin(φ), (14)

zP = hP (ρ),

where we have superscripted the quantities F(ρ,φ), M(φ), f (ρ) and h(ρ) by P to empha-
size that they denote now plane GW’s. We have also, as for the Brill case in Sect. 3 and for
the same reason of ensuring the periodic fringing, introduce the function MP (φ) which is
identical to the MB(φ) from (6). Thus, one may use the piecewise monotony and boundness
of MP (φ) and expand it in a Fourier series [46, 47] for obtaining the appropriate coeffi-
cients aP

0 , aP
k , bP

k which are identical to the aB
0 , aB

k , bB
k from (7). One may, also, obtain

the following expression for the metrics (compare with the Brill’s case of (10))

(dsP )2 = (dxP )2 + (dyP )2 + (dzP )2

= ((MP )2(φ)(f P )2
ρ(ρ) + (hP )2

ρ(ρ))dρ2

+ (f P )2(ρ)((MP )2
φ(φ) + (MP )2(φ))dφ2

+ 4MP (φ)MP
φ (φ)f P

ρ (ρ)f P (ρ)dρdφ, (15)

where f P
ρ (ρ), hP

ρ (ρ) denote the respective derivatives of f P (ρ), hP (ρ) with respect to ρ

and MP
φ (φ) is the derivative of MP (φ) with respect to φ. The metrics from (15) is equated

to that obtained in (55) in Appendix 2 where, as for the Brill case discussed in Sect. 3, one
considers only the metrics on the equator [24] which is equated to the surface of rotation
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from (14) and also assume the norotation case. Thus, using the expressions for hT T
ρ̂ρ̂

and hT T

φ̂φ̂

from (55) in Appendix 2 one may write the metric of the fringed trapped surface as

(dsP )2 = (dxP )2 + (dyP )2

= ((MP )2(φ)(f P )2
ρ(ρ) + (hP )2

ρ(ρ))dρ2 + (f P )2(ρ)((MP )2
φ(φ) + (MP )2(φ))dφ2

= hT T
ρ̂ρ̂ d2ρ + hT T

φ̂φ̂
d2φ

= cos(kz − f t)

[
sin(4φ)

2
(A× − A+)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂ )

]
(d2ρ − ρ2dφ2). (16)

The appropriate expressions for FP (ρ,φ) = f P (ρ)MP (φ) and hP (ρ) from (14) which
determine the intrinsic geometry of the fringed trapped surface are obtained from (16) by
equating the respective coefficients of both dρ2 and dφ2 as follows

(MP )2(φ)(f P )2
ρ(ρ) + (hP )2

ρ(ρ)

= cos(kz − f t)

[
sin(4φ)

2
(A× − A+) · (eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂ )

]
. (17)

Note that, as emphasized after (54) in Appendix 2, the expressions eρ̂ ⊗ eρ̂ , eρ̂ ⊗ eφ̂ and
eφ̂ ⊗eφ̂ are tensor components in the ρρ, ρφ and φφ directions and so, of course, they are not
tensors proper. This is of course the generalization of the components of some space vector,
such as the x, y and z components of it, which although may have functional properties
they certainly are not vectors. Thus, in the last equation and the following ones we have
compared these tensor components to functions and even took their square roots

(f P )2(ρ)((MP )2
φ(φ) + (MP )2(φ))

= ρ2 cos(kz − f t)

[
sin(4φ)

2
(A+ − A×) · (eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eφ̂ ⊗ eφ̂ − eρ̂ ⊗ eρ̂ )

]
. (18)

From (18) one obtains for FP (ρ,φ)

FP (ρ,φ) = f P (ρ)MP (φ)

=
{(

1

1 + (MP )2
φ(φ)

(MP )2(φ)

)
ρ2 cos(kz − f t)

[
sin(4φ)

2
(A+ − A×) · (eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eφ̂ ⊗ eφ̂ − eρ̂ ⊗ eρ̂ )

]} 1
2

. (19)
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From the last equation one obtains for the derivative of FP (ρ,φ) with respect to ρ

FP
ρ (ρ,φ) = f P

ρ (ρ)MP (φ)

=
{(

1

1 + (MP )2
φ(φ)

(MP )2(φ)

)
cos(kz − f t)

[
sin(4φ)

2
(A+ − A×) · (eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eφ̂ ⊗ eφ̂ − eρ̂ ⊗ eρ̂ )

]} 1
2

. (20)

And, using (17), one may obtain for hP (ρ)

hP (ρ) =
∫

dρ

{
cos(kz − f t)

{
sin(4φ)

2
(A× − A+)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂ )

}

− (MP )2(φ)(f P )2
ρ(ρ)

} 1
2

. (21)

The expressions for FP (ρ,φ), FP
ρ (ρ,φ) and hP (ρ), given by (19–21), determine, as men-

tioned, the intrinsic geometry of the fringed trapped surface related to the plane GW’s.
Now, as done for the optical experiment from Sect. 2 and for the Brill case from Sect. 3,

we find here the orders and intervals related to the fringed trapped surface geometry result-
ing from the plane GW’s. As mentioned, except for the superscript, the periodic MP (φ)

is identical to MB(φ) so relating the ordered bands of the fringed trapped surface to the
same φm given by the same expression φm = φ0 ± mπ (see the discussion before (12)) one
may write (compare with (12))

xP
m = FP (ρ,φm) cos(φm) = f P (ρ)MP (φm) cos(φm),

(22)
yP

m = FP (ρ,φm) sin(φm) = f P (ρ)MP (φm) sin(φm),

where for the maximal bands one have either −π ≤ φ ≤ − π
2 or π

2 ≤ φ ≤ π for which
MP (φ) = 1 (see (6)) and for minimal bands φ should be from the range − π

2 < φ < π
2 for

which MP (φ) = 0 (see (6)). Thus, denoting the interval between two neighboring m orders
in the fringed trapped surface geometry by �P (ρ) and using the relations cos(φ(m+1)) =
− cos(φm), sin(φ(m+1)) = − sin(φm) and MP (φ(m+1)) + MP (φm) = 2 obtained from (8) one
may write in correspondence with (13)

�P (ρ) =
√

(xP
(m+1) − xP

m)2 + (yP
(m+1) − yP

m)2

= {(f P (ρ)MP (φm+1)) cos(φ(m+1)) − f P (ρ)MP (φm) cos(φm))2

+ (f P (ρ)MP (φm+1)) sin(φ(m+1)) − f P (ρ)MP (φm) sin(φm))2} 1
2

= {(f P )2(ρ)(MP (φ(m+1)) + MP (φm))2(cos2(φm) + sin2(φm))} 1
2

= 2f P (ρ). (23)
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Using (19) one may write the last equation as

�P (ρ) = 2f P (ρ)

=
{(

4

((MP )2(φ) + (MP )2
φ(φ))

)

× ρ2 cos(kz − f t)

[
sin(4φ)

2
(A+ − A×) · (eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eφ̂ ⊗ eφ̂ − eρ̂ ⊗ eρ̂ )

]} 1
2

. (24)

In Table 1 we have gathered in one place the expressions related to the DSE, SSE and the
corresponding gravitational source-free Brill’s and plane GW’s. The DSE case represents in
this table the general n-slit experiment where n ≥ 2. This table shows for all these 4 cases
the expressions related to the fringed and nonfringed situations. The relevant expressions for
the nonfringed trapped surfaces are derived in the appendices. Note that for the nonfringed
case each slit of the DSE is treated as a separate SSE. Also, the interference results obtained
for the fringed case from the, actually, single slit of the spurious double-slit screen may,
theoretically, be treated as if this single slit of length b is divided into two separate slits each
of length b

2 . Thus, the diffraction of light from this single slit may be considered, for the
fringed case, as interference between light rays from the two halves of the slit as seen in the
table.

5 Concluding Remarks

We have represented and discussed a new variant of the DSE. In this version thirty (30) mir-
rors were prepared to serve as the relevant screens and a red laser pointer serves as a mono-
chromatic light source. Twenty nine (29) mirrors were prepared as ordinary double-slit
screens and the remaining one was, actually, a single slit screen which were prepared so
that it seemed as if it was a double one. After a large number of times of repeating the DSE
upon these screens, where the true nature of each of them, whether it is the real double slit or
the faked one, was not known during the experiments, one comes with the unexpected result
of obtaining interference pattern even when the screen was later found to be the single-slit
one. A photograph of this result is shown in Fig. 8. That is, performing this experiment un-
der the mentioned specific conditions has changed the form of the routes through which the
photons propagate between the two screens. Similar changes were shown, using any n-slit
screen (n ≥ 1), where it was established that if the data about the routes through slits were
used during the experiment one obtains a number of diffraction patterns equal to the number
of slits used (see Figs. 2, 3, 4) otherwise one obtains the interference pattern of Fig. 1. That
is, if these data are used then most photons propagate in the forward directions (m = 0) for
all n-slit screens (n ≥ 1) otherwise, all directions are equally traversed, even in the SSE, and
all orders m have the same strength (see Fig. 1).

We have shown that parallel gravitational situations, in which the corresponding space-
time becomes fringed, may, theoretically, be related either to the source-free plane GW’s or
to the corresponding Brill’s ones. For each of these cases we have used the method in [24]
and have calculated the appropriate fringed and nonfringed trapped surfaces by equating
their metrics to the corresponding rotation metrics on the equator. This is shown in the Brill’s
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case by using (36) of Appendix 1 for the nonfringed trapped surface and (10) of Sect. 3 for
the fringed one. In the plane GW’s case it is shown by using (57) of Appendix 2 for the
nonfringed trapped surface and (16) of Sect. 4 for the fringed one. This, of course, does not
mean that for the Brill case both equations of (36) in Appendix 1 and (10) are valid at the
same time or that for the plane GW case both equations of (57) in Appendix 2 and (16) are
simultaneously valid since, as obviously seen, either pair of these equations are exclusive.
One can not have both fringed and nonfringed trapped surfaces of the same kind existing
side by side.

As known, the Bohr’s complementarity principle [5–7, 41–43] explains why in some
experiments the particle nature of matter is demonstrated and in others its wave character by
stating that what determines the final actual results of the experiment is what it is supposed
to measure. This principle assumes a thorough prior knowledge of all the constituents of
the experiments including, of course, the true nature of the screens activated in our optical
examples. We discuss here the case where the observer does not know the very nature of
these screens but think that he is activating (with 0.97 probability) a real double-slit screen
which is indeed realized not only by obtaining an interference pattern over and over again
but also by checking these screens to find out that they are indeed double-slit. Thus, after
obtaining the same result for hundreds of times the experiment amounts, according to the
observer, to look for and find this same optical pattern which is, actually, what obtained even
when the screen was later found to be single-slit. Thus, one may argue that these results
constitute a generalization of the Bohr’s complementarity principle in that they conform to
what the observer expects to obtain from the experiment even in case the activated apparatus
is later found to be not optimally suitable for obtaining these results. This is the meaning
of writing in the text, regarding the experiment described in Sect. 2, that knowing and,
therefore, using the mentioned data results in entirely different consequences from those
obtained when these data are not used. For example, as emphasized in the text regarding
the case in which the spurious double-slit screen was used, the mere knowledge during
the experiment of this datum entirely changes the character of the experiment including
the probability to obtain the corresponding diffraction pattern which is changed from the
mentioned 0.033 to 1.

One may see this by considering a changed version of the experiment in which the ele-
ment of not knowing the true nature of the chosen screen is absent so that the nature of the
screen is checked immediately after randomly picking it before sending the laser ray through
it. Thus, the experiment yields one of two possible results: (1) choosing a real double-slit
mirror with a probability of 29

30 = 0.97 or (2) picking the faked double-slit mirror with a
probability of 1

30 = 0.033. In such case when (1) is realized the probability to find interfer-
ence pattern is unity and that for finding diffraction one is zero. Similarly, one may see that
if (2) is realized the probability to find diffraction pattern is unity and that for finding inter-
ference one is zero. Thus, denoting the wave functions for choosing the real and spurious
double-slit screens by φ1 and φ2 respectively and using the quantum mechanical superposi-
tion principle [5–7] one may write the corresponding wave function as W = c1φ1 + c2φ2,

where c1 =
√

29
30 and c2 =

√
1

30 are the corresponding wave amplitudes. Thus, the probabil-
ity to find interference pattern, even after repeating this experiment thousands of times, is
always (c1 · 1)2 = 29

30 and that for finding single-slit diffraction one is always (c2 · 1)2 = 1
30 .

Note that we have multiplied c1 and c2 by unity to emphasize that once the random choice
of either (1) or (2) is done with the respective probability amplitudes of c1 and c2 then the
appropriate optical pattern follows in both cases with unity probability.

For the experiment discussed in Sect. 2, where the true nature of the chosen screen is not
known during the experiment, the two possible results are (compare with the former situa-
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tion); (1) finding interference pattern with a probability of 29
30 or (2) diffraction one with a

probability of 1
30 . Thus, denoting the wave functions for finding interference and diffraction

patterns by η1 and η2 respectively and using the quantum mechanical superposition princi-

ple one may write the corresponding wave function as W = c1η1 + c2η2, where c1 =
√

29
30

and c2 =
√

1
30 are the corresponding wave amplitudes. In such case one can not revert the

former discussion and say, for example, that if (1) is realized then the probability is unity
to discover that the related screen is a real double-slit and it is zero for finding a single-slit
one. This is because the physical evolution always runs from first knowing the true char-
acter of the activated screen and only after that to see the expected results obtained from
using this known screen. No one guarantees that the reverted evolution of first seeing an
interference pattern and then ascertaining that the related screen is double-slit is always fol-
lowed. And indeed in Sect. 2 we have seen that under specific conditions this evolution is
not followed.

We note, in summary, that there is nothing special about the n-slit experiments (n ≥ 1)
which causes their results to depend so critically upon using or not using during these exper-
iments the relevant mentioned data. That is, one may, logically, suppose that similar results
will also be obtained for other entirely different experiments. For example, it is possible
to design new versions of known experiments in which some constituent elements are not
known and, therefore, not used during these experiments. In such case one may, as for the
previously discussed n-slit experiments, expect to obtain results which are basically differ-
ent from those obtained when these elements are used.

Appendix 1 The Canonical Formalism of the General Relativity and the Brill GW’s

We represent here, for completeness, a short review of the ADM formalism [16] and its
adaptation to the source-free Brill wave [16, 20–24, 27, 28]. In the ADM canonical formu-
lation of general relativity one starts from the (3 + 1)-dimensional split of space-time which
is expressed by the corresponding metric tensor [16, 38]

(4)gαβ =
(

(4)g00
(4)g0j

(4)gi0
(4)gij

)
=

(
NkN

k − N2 Nj

Ni gij

)
, (25)

where the spacelike three-dimensional hypersurfaces at constant times are represented by the
metric tensor gij . The shift vector is denoted by Ni and the lapse function by N . Denoting
the covariant derivative by | one may write the action [16]

I = 1

16π

∫ (
πij ∂gij

∂t
− NH(πij , gij ) − NiHi (π ij , gij )

)
d4x, (26)

where the super-Hamiltonian H and supermomentum Hi are [16]

H(πij , gij ) = g− 1
2

(
Tr(π2) − 1

2
(Tr(π))2

)
− g

1
2 R,

(27)
Hi (π ij , gij ) = −2πik

|k .
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Upon extremization of the action I with respect to gij and πij one may write the following
vacuum field equations [16]

∂gij

∂t
= 2Ng− 1

2

(
πij − 1

2
gij Tr(π)

)
+ Ni|j + Nj |i , (28)

∂πij

∂t
= −N

(
Rij − 1

2
gijR

)
+ 1

2
Ng− 1

2 gij

(
Tr(π2) − 1

2
(Tr(π))2

)

− 2Ng− 1
2

(
πimπj

m − 1

2
πij Tr(π)

)
+ gij (N |ij − gijN

|m
|m ) − (πijNm)|m

− Ni
|mπmj − N

j

|mπmi. (29)

The appropriate initial-value equations in this ADM formalism are obtained upon extrem-
ization of the action I from (26) with respect to the lapse N and shift Ni . Thus, taking into
account that the extrinsic curvature tensor is given by [16] Kij = 1

2N
(Ni|j + Nj |i − ∂gij

∂t
)

one may write, for the vacuum case, upon extremization with respect to the lapse N the
initial-value condition [16]

(3)R + (Tr(K))2 − Tr(K2) = 0. (30)

And upon extremization with respect to the shift Ni one obtains the three initial-value con-
ditions [16]

(Kk
i )|k − δk

i (Tr(K))|k = 0. (31)

For easing the following discussion we assume that the relevant space-time is charac-
terized by time and axial symmetries and no rotation. The time symmetry property en-
sures [16, 20–24, 27, 28] the existence of a spacelike hypersurface  in which the extrinsic
curvature Kij vanishes at all its points. In such case the three momentum initial condi-
tions from (31) are trivially satisfied and the fourth Hamiltonian initial condition from (30)
reduces, for the vacuum case, to (3)R = 0. Thus, as in [20–23], we take the following con-
formal basic metric on the initial spacelike hypersurface

ds2
conformal = e2Aq(ρ,z)(dz2 + dρ2) + ρ2dφ2. (32)

From this metric one obtains the following components for the metric tensor [20–24] gij

gρρ = gzz = e2Aq(ρ,z), gφφ = ρ2, gρz = gρφ = gzφ = 0, (33)

where gρφ = gzφ = 0 follow from the no-rotation assumption. The axial symmetry property
ensures that on the z axis, where ρ = 0, the function q should vanish. The Hamiltonian
initial condition is solved, as in [20–24], by assuming the following conformal map

ds2
physical = ψ4ds2

conformal = ψ4(e2Aq(ρ,z)(dz2 + dρ2) + ρ2dφ2), (34)

where ψ is the conformal factor. The embedded surface is obtained by assuming the metric
of the equator to be equal to that of a surface of rotation in Euclidean space [24] defined as

xB = f B(ρ) cos(φ), yB = f B(ρ) sin(φ), zB = hB(ρ), (35)
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where the superscript B denotes that we consider the Brill GW’s. Noting that on the equator
gzz = 0 one may perform the equating process as [24]

(dsB)2 = (dxB)2 + (dyB)2 + (dzB)2

= ((f B)2
ρ(ρ) + (hB)2

ρ(ρ))dρ2 + (f B)2(ρ)dφ2

= gB
ρ̂ρ̂d

2ρ + gB

φ̂φ̂
d2φ = ψ4(e2Aq(ρ,z)dρ2 + ρ2dφ2). (36)

Thus, the surface on the equator which is characterized by the same intrinsic geometry as
that of the mentioned generating Brill GW is [24]

f B(ρ) = ρψ2,

f B
ρ (ρ) = ψ2 + 2ρψψρ, (37)

hB(ρ) =
∫

dρ(ψ4e2Aq − (f B)2
ρ).

Schematic representations of such three surfaces are shown in Fig. 11 for the amplitudes
A ≈ 2, A ≈ 5, A ≈ 15. The circular-form surface at the bottom corresponds to the smaller
amplitude A ≈ 2 whereas the upper pinched-off surface corresponds to A ≈ 15. That is,
as the amplitude A of the wave increases the surface deviates from the circular form and
tends to be closed upon itself (pinched-off). Note, however, that these embeddings do not
determine the exact amplitude and shape of the developed apparent throats. For this one have
to solve the trapped surface equation (see, for example, equation (27) in [24], see also [32]
(which represents another embedding method)). This is generally done by using numerical
analysis [29] through which one may develop and follow the Brill initial data across a grid
framework.

Appendix 2

2.1 The Linearized Plane GW’s and Geodesics Mechanics

In this appendix we review the theory of plane gravitational wave as represented in [39]. For
that purpose we first introduce the basic theory of geodesics mechanics in the presence of
GW’s as outlined in [16]. That is, we calculate the change in location of a test point (TP)
moving along its geodesic route relative to another TP due to a passing GW. The two TP’s,
as well as their specific geodesics, are denoted by A and B and the interval between them
is denoted by the vector n. The proper reference frame of A is chosen as the appropriate
coordinate system. That is, the spatial origin xj = 0 is attached to the world line of A
and the coordinate time x0 is A’s proper time so that x0 = τ on the world line xj = 0
(see Chap. 35 in [16]). This system is assumed to be nonrotating frame as that obtained
by attaching the orthonormal spatial axes to gyroscopes [16]. Thus, it constitutes a local
Lorentz frame [4, 16] along the whole world line of A and not only at one event on it. As
mentioned, we use the linearized theory of gravitation [16] and, therefore, the metric tensor
is [16]

gμν = ημν + hμν + O(hμν)
2, (38)
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where ημν is the Lorentz metric tensor [4, 16] and hμν is a slight perturbation of it. The
relevant metric is [16]

ds2 = −(dx0)2 + δjkdxjdxk + O(|xj |2)dxαdxβ. (39)

The small perturbation hμν from (38) is identified, as done in [16, 18, 19], with the passing
GW. Use is made of the transverse-traceless (TT) gauge [16, 18, 19] which have the fol-
lowing properties; (1) all components vanish except the spatial ones, i.e., hT T

μ0 = 0, (2) these
components are divergence-free i.e., hT T

kj,j = 0, and (3) they are trace-free i.e., hT T
kk = 0. Also,

as emphasized in [16], only pure GW’s, of the kind discussed here, can be reduced to TT
gauge. As noted, the GW is identified with hT T

jk and, therefore, have the same characteris-
tics [16].

The world lines A and B represent geodesics and so TP’s fall freely along them. Thus,
assuming the basis eβ changes arbitrarily but smoothly from point to point one may write
the velocity of the TP B relative to A as [16] ∇un = (nβ;γ uγ )eβ , where n is the vec-
tor from A to B, u is the tangent vector to the geodesic B i.e., u = ∂B(n,τ )

∂τ
and nβ;γ

is the covariant derivative of nβ [4, 16] i.e., nβ;γ = dnβ

dxγ + Γ β
μγ nμ where Γ β

μγ is [4, 16]
Γ β

μγ = gνβΓνμγ = 1
2gνβ(gνμ,γ + gνγ,μ − gμγ,ν). The expression inside the circular parenthe-

ses nβ;γ uγ represents the components of ∇un [16] i.e., nβ;γ uγ = Dnβ

dτ
= dnβ

dγ
+ Γ β

μγ nμ dxγ

dτ

so the expression for the acceleration of the TP B relative to A [16] ∇u(∇un) = −R, may
be written componently as [16]

D2nα

dτ 2
= −Rα

βγ δu
βuδnγ , (40)

where R is the Riemann curvature tensor whose components are written as [4, 16] Rα
βγ δ =

∂Γ α
βδ

∂xγ − ∂Γ α
βγ

∂xδ + Γ α
μγ Γ

μ

βδ − Γ α
μδΓ

μ

βγ . Now, remembering that x0 = τ on the world line xj = 0
of A one may write (40) as

D2nj

dτ 2
= −R

j

0k0n
k = −Rj0k0n

k. (41)

Note [16] that, to first order in the metric perturbation hT T
jk , the transverse trace-free (TT)

coordinate system may move [16] with the proper reference frame of A. That is, to this order
in hT T

jk , the time t in the system TT may be identified [16] with the proper time τ of A so
that [16] RT T

j0k0 = Rj0k0 where Rj0k0 is calculated in A’s proper reference frame and RT T
j0k0,

which is calculated in the T T system, were shown (see (35.10) in [16]) to assume the simple
form of Rj0k0 = − 1

2hT T
jk,00. Note that since the T T system and the proper reference frame

of A move together they are both denoted [16] by the same indices (0, k, j) with no need
to use primed and unprimed indices. Also, since the origin is situated along A’s geodesic
the components of the separating vector n are no other than the coordinates of B. That is,
writing the coordinates of A and B as x

j
A and x

j
B one obtains nj = x

j
B − x

j
A = x

j
B − 0 = x

j
B .

Also, at xj = 0 we have Γ
μ

αβ = 0 for all x0 so that
dΓ

μ
αβ

dτ
= 0 and the covariant derivative D2nj

dτ2

reduces [16] to ordinary derivative. That is, (41) becomes

d2x
j

B

dτ 2
= −Rj0k0x

k
B = 1

2

(
∂2hT T

jk

∂t2

)
xk
B. (42)
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As initial condition we assume the TP’s A and B to be at rest before the GW arrives. That
is, x

j
B = x

j

B(0) when hT T
jk = 0 so that the solution of (42) is

x
j
B(τ ) = xk

B(0)

(
δjk + 1

2
hT T

jk

)
atA

, (43)

which is the new location of B as seen in the proper reference frame of A. The hT T
jk repre-

sents the passing GW which is supposed here to be a plane wave advancing in the n̂ direction
(not the same as the separation vector n) where the TP’s A and B and their relevant geo-
desics lie in the plane perpendicular to n̂. We denote the two perpendicular directions to n̂
by en̂1 and en̂2 and note [16] that this GW have the following unit linear-polarization tensors

e+n̂1 n̂1
= en̂1 ⊗ en̂1 − en̂2 ⊗ en̂2 = −(en̂2 ⊗ en̂2 − en̂1 ⊗ en̂1) = −e+n̂2 n̂2

, (44)

e×n̂1 n̂2
= en̂1 ⊗ en̂2 + en̂2 ⊗ en̂1 = (en̂2 ⊗ en̂1 + en̂1 ⊗ en̂2) = e×n̂2 n̂1

, (45)

where ⊗ is [48, 49] the tensor product. Thus, considering the mentioned T T ’s gauge con-
straints hT T

μ0 = 0, hT T
ij,j = 0 and hT T

kk = 0 one may realize that for the GW propagating in
the n̂ direction, the only nonzero components are [16]

hT T
+n̂1 n̂1

= �(A+e+n̂1 n̂1
e−if t eikrn̂)

= A+e+n̂1 n̂1
· cos(k(r1 cos(α) + r2 cos(β) + r3 cos(η)) − f t)

= −hT T
+n̂2 n̂2

= −�(A+e+n̂2 n̂2
e−if t eikrn̂)

= −A+e+n̂2 n̂2
· cos(k(r1 cos(α) + r2 cos(β) + r3 cos(η)) − f t), (46)

hT T
×n̂1 n̂2

= �(A×e×n̂1 n̂2
e−if t eikrn̂)

= A×e×n̂1 n̂2
· cos(k(r1 cos(α) + r2 cos(β) + r3 cos(η)) − f t)

= hT T
×n̂2 n̂1

= �(A×e×n̂2 n̂1
e−if t eikrn̂)

= A×e×n̂2 n̂1
· cos(k(r1 cos(α) + r2 cos(β) + r3 cos(η)) − f t) (47)

where � denotes the real parts of the expressions which follow and r is the position vector of
a point in space. By A+ and A× we denote the amplitudes which are respectively related to
the two modes of polarization e+n̂1 n̂1

and e×n̂1 n̂2
. By f we denote the time frequency, k is 2π

λ
,

and cos(α), cos(β), cos(η) are the direction cosines of n̂. Thus, the general perturbation
hT T

jk resulting from the passing GW may be written as [39, 40]

hT T
jk = hT T

+jk
+ hT T

×jk
= �((A+e+jk

+ A×e×jk
)e−if t eikrn̂)

= (A+e+jk
+ A×e×jk

) cos(k(r1 cos(α) + r2 cos(β) + r3 cos(η)) − f t). (48)

A better understanding of the situation follows when one considers [16] an ensemble of TP’s.
That is, assuming a large number of TP’s B which form a circular (elliptic) ring around
the TP A in the center one may realize that the passing GW with either e+n̂1n̂1 or e×n̂1 n̂2
polarization periodically changes the former array into an elliptic (circular) one as shown in
Fig. 12.
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Fig. 12 A schematic representation of the influence of a passing plane GW upon a circular (elliptic) array of
test particles which periodically changes its form to elliptic (circular) array

Substituting from (48) into (43) one obtains the components along n1 and n2 of the new
location of the TP B as calculated in the proper reference frame of A. That is, for j = n1

one obtains [39]

x
n̂1
B =

{
x

n̂1
B(0) + 1

2
(A+e+n̂1 n̂1

x
n̂1
B(0) + A×e×n̂1 n̂2

x
n̂2
B(0))

× cos(k(x cos(α) + y cos(β) + z cos(η)) − f t)

}
atA

. (49)

And for j = n2 one obtains [39]

x
n̂2
B =

{
x

n̂2
B(0) + 1

2
(A×e×n̂2 n̂1

x
n̂1
B(0) + A+e+n̂2 n̂2

x
n̂2
B(0))

× cos(k(x cos(α) + y cos(β) + z cos(η)) − f t)

}
atA

. (50)

2.2 The Nonfringed Trapped Surface Resulting from Plane GW’s

As shown in [39] the comparison between the electromagnetic (EM) theory and the lin-
earized general relativity enables one to use theoretical methods similar to those used in
the EM theory for assuming interference and holographic properties for GW’s also. Simi-
lar comparison between these same theories has led to the concept of extrinsic time [50].
Thus, one may imagine [39] a subject (S) and reference (R) GW’s which constructively
interfere and give rise to a spacetime holographic image [39, 40] which corresponds to the
EM holographs [51] resulting from the interference of the S and R EM waves [51]. This line
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of reasoning was followed in [39, 40] and we introduce here some results obtained there.
We note that for gravitational constructive interference the S and R GW’s, as for their EM
analogues, should be similar and in phase with each other (see discussion in [39, 40]). Thus,
the former expressions (46–48) for the GW may be related not only to either S or R but also,
in case of constructive interference, to the combined GW [39, 40] obtained from such an in-
terference. The intensity, exposure and transmittance of this combined GW were calculated
[40] in analogy with the corresponding EM quantities. It has also been shown in [39] that
the holographic images resulting from this combined GW correspond to the trapped surfaces
[24, 32–34] formed from such wave. Thus, since we discuss here these trapped surfaces we
consider the former expressions (46–48) and the following ones as referring to the combined
GW obtained from the constructive interference of the S and R GW’s. We note that it has
been shown [35–37] that the collision of two plane GW’s results in a great strengthening
(corresponds to constructive interference) of the resulting GW which forms, as is the case
for strong GW’s [16, 29, 32, 34], a singularity [35–37].

Now, since the trapped surfaces are embedded in the Euclidean space [16, 24, 32] one
have first to convert [39] the tensor metric components (see (46–47)) hT T

n̂1n̂1
= −hT T

n̂2n̂2
,

hT T
n̂1n̂2

= hT T
n̂2n̂1

from the n̂, n̂1, n̂2 system, into the x̂, ŷ, ẑ Euclidean system. Thus, sub-
stituting [39] n̂ = ẑ, n̂1 = x̂, n̂2 = ŷ one may write the Euclidean metric components
as [39]

hT T
x̂x̂ = �(A+e+x̂x̂

e−if t eikrẑ) = A+e+x̂x̂
· cos(kz − f t)

= −hT T
ŷŷ = −�(A+e+ŷŷ

e−if t eikrẑ) = −A+e+ŷŷ
· cos(kz − f t),

(51)
hT T

x̂ŷ = �(A×e×x̂ŷ
e−if t eikrẑ) = A×e×x̂ŷ

· cos(kz − f t)

= hT T
ŷx̂ = �(A×e×ŷx̂

e−if t eikrẑ) = A×e×ŷx̂
· cos(kz − f t),

where r = xx̂ + yŷ + zẑ and e+x̂x̂
, e+ŷŷ

, e×x̂ŷ
are the Euclidean unit linear-polarization ten-

sors obtained [39] by substituting in (44–45) n̂ = ẑ, n̂1 = x̂, n̂2 = ŷ. Thus, one may write
the metrics from (39) in the TT gauge as [39]

(dsT T )2
(x̂,ŷ,ẑ) = hT T

x̂x̂ dx2 + hT T
ŷŷ dy2 + 2hT T

x̂ŷ dxdy

= A+e+x̂x̂
· cos(kz − f t)dx2 + A+e+ŷŷ

· cos(kz − f t)dy2

+ 2A×e×x̂ŷ
· cos(kz − f t)dxdy

= A+e+x̂x̂
· cos(kz − f t)(dx2 − dy2) + 2A×e×x̂ŷ

· cos(kz − f t)dxdy, (52)

where we use [39] e+x̂x̂
= −e+ŷŷ

(see (44)). For calculating the nonfringed embedded sur-
face one have to convert [39] the last metric from the (x̂, ŷ, ẑ) system to the cylindrical
one (ρ̂, φ̂, ẑ) where x = ρ cos(φ), y = ρ sin(φ), z = z. Thus, using the trigonometric
relations (cos2(φ) − sin2(φ)) = cos(2φ), 2 sin(φ) cos(φ) = sin(2φ) and transforming the
unit polarization tensors e+x̂x̂

, e+x̂y
to the corresponding cylindrical ones e+ρ̂ρ̂

, e+
ρ̂φ̂

one
obtains [39]

(dsT T )2
(ρ̂,φ̂,ẑ)

= hT T
ρ̂ρ̂ dρ2 + hT T

φ̂φ̂
dφ2 + hT T

ρ̂φ̂
dρdφ

= A+e+ρ̂ρ̂
· cos(kz − f t)(cos(2φ)(dρ2 − ρ2dφ2) − 2ρ sin(2φ)dρdφ)

+ A×e×
ρ̂φ̂

· cos(kz − f t)(sin(2φ)(dρ2 − ρ2dφ2) + 2ρ cos(2φ)dρdφ),

(53)
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where the unit polarization tensor components e+ρ̂ρ̂
, e+

ρ̂φ̂
are given by [39]

e+ρ̂ρ̂
= cos(2φ)(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂ ) − sin(2φ)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ ),

(54)
e×

ρ̂φ̂
= sin(2φ)(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂ ) + cos(2φ)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ ).

The last tensor components are obtained by using: (1) e+x̂x̂
= ex̂ ⊗ ex̂ − eŷ ⊗ eŷ =

−e+ŷŷ
, e×x̂ŷ

= ex̂ ⊗ eŷ + eŷ ⊗ ex̂ = e×ŷx̂
which are obtained from (44–45) by substi-

tuting [39] n̂ = ẑ, n̂1 = x̂, n̂2 = ŷ, (2) ex̂ = cos(φ)eρ̂ − sin(φ)eφ̂ , eŷ = sin(φ)eρ̂ +
cos(φ)eφ̂ , eẑ = eẑ [48] and (3) (cos2(φ) − sin2(φ)) = cos(2φ), 2 cos(φ) sin(φ) = sin(2φ).
As mentioned after (17), e+ρ̂ρ̂

, e×
ρ̂φ̂

as well as eρ̂ ⊗ eρ̂ , eρ̂ ⊗ eφ̂ and eφ̂ ⊗ eφ̂ are ten-
sor components in the ρρ, ρφ and φφ directions and so, of course, they are not tensors
proper. This enables one to perform some mathematical operations on these components
such as comparing them to functions or taking their square roots as done, for example,
in (17–21).

Assuming [39], as in [20–24, 27, 28], a non-rotating system so that hT T

ρ̂φ̂
is identically

zero one may write (53) as [39]

(dsT T )2
(ρ̂,φ̂,ẑ)

= hT T
ρ̂ρ̂ d2ρ + hT T

φ̂φ̂
d2φ

= cos(kz − f t)(A+e+ρ̂ρ̂
cos(2φ) + A×e×

ρ̂φ̂
sin(2φ))((dρ2 − ρ2dφ2))

= cos(kz − f t)

[
sin(4φ)

2
(A× − A+)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂ )

]
(d2ρ − ρ2dφ2).

(55)

Note that when A× = A+ the expression (A+e+ρ̂ρ̂
cos(2φ) + A×e×

ρ̂φ̂
sin(2φ)) is consider-

ably simplified and reduces [39] to

(A+e+ρ̂ρ̂
cos(2φ) + A×e×

ρ̂φ̂
sin(2φ)) = A+(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂ ).

We, now, find the relevant nonfringed embedded surface and assume [39], as done for the
nonfringed trapped surfaces resulting from the Brill’s GW [24] (see Appendix 1 here), that
its metric is that of a surface of rotation z(x, y) related to Euclidean space as

xP = f P (ρ) cos(φ), yP = f P (ρ) sin(φ), zP = hP (ρ), (56)

where the superscript P denotes that we consider plane GW’s. Thus, using (55) one may
write the metric of the relevant holographic image (trapped surface) as [39] (compare
with (36) in Appendix 1 for the Brill case),

ds2 = dx2 + dy2 + dz2 = ((f P )2
ρ(ρ) + (hP )2

ρ(ρ))dρ2 + (f P )2(ρ)dφ2

= hT T
ρ̂ρ̂ d2ρ + hT T

φ̂φ̂
d2φ

= cos(kz − f t)(A+e+ρ̂ρ̂
cos(2φ) + A×e×

ρ̂φ̂
sin(2φ))(dρ2 − ρ2dφ2)

= cos(kz − f t)

[
sin(4φ)

2
(A× − A+)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )
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+ (A+ cos2(2φ) + A× sin2(2φ))(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂ )

]
(d2ρ − ρ2dφ2) (57)

where (54) was used and by f P
ρ (ρ), hP

ρ (ρ) we denote the first derivatives of f P (ρ), hP (ρ)

with respect to ρ. Using (57) one may determine [39] the quantities f P (ρ), f P
ρ (ρ)

and hP (ρ) which defines the intrinsic geometry of the nonfringed trapped surface (gravi-
tational holograph)

f P (ρ) = ρ

[
cos(kz − f t)

{
sin(4φ)

2
(A+ − A×)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eφ̂ ⊗ eφ̂ − eρ̂ ⊗ eρ̂ )

}] 1
2

,

f P
ρ (ρ) =

[
cos(kz − f t)

{
sin(4φ)

2
(A+ − A×)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

(58)

+ (A+ cos2(2φ) + A× sin2(2φ))(eφ̂ ⊗ eφ̂ − eρ̂ ⊗ eρ̂ )

}] 1
2

,

hP (ρ) =
∫

dρ

[
cos(kz − f t)

{
sin(4φ)

2
(A× − A+)(eρ̂ ⊗ eφ̂ + eφ̂ ⊗ eρ̂ )

+ (A+ cos2(2φ) + A× sin2(2φ))(eρ̂ ⊗ eρ̂ − eφ̂ ⊗ eφ̂ )

}
− (f P )2

ρ(ρ)

] 1
2

.
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